A focusing and defocusing complex short pulse equation

Baofeng Feng
Department of Mathematics, The University of Texas Rio Grande Valley
Presentation at
International Workshop on Integrable Systems Mathematical Analysis and Scientific Computing
National Taiwan University, Taipei

October 20, 2015

Outline of the talk

- Derivation of the complex short pulse (CSP) equation from nonlinear optics
- Bright, breather and rogue wave solutions to the focusing CSP equation.
- Dark soliton solution to the defocusing CSP equation
- Semi- and fully discrete analogues of the CSP equation
- Conclusion and further topics

Joint work with:
K. Maruno (Waseda University), Y. Ohta (Kobe University),
L. Ling (South China Univ. of Tech.), Z. Zhu (Shanghai Jiaotong Univ.)

Review on the Nonlinear Schrödinger equation

Nonlinear Schrödinger (NLS) equation

$$
\mathrm{i} q_{t}+q_{x x}+\sigma 2|q|^{2} q=0, \quad \sigma= \pm 1
$$

- $\sigma=1$: focusing case, possessing bright soliton
- $\sigma=-1$: defocusing case, possessing dark soliton
- Rogue wave solution for the focusing NLS equation

Review on the Nonlinear Schrödinger equation

Nonlinear Schrödinger (NLS) equation

$$
\mathrm{i} q_{t}+q_{x x}+\sigma 2|q|^{2} q=0, \quad \sigma= \pm 1
$$

- $\sigma=1$: focusing case, possessing bright soliton
- $\sigma=-1$: defocusing case, possessing dark soliton
- Rogue wave solution for the focusing NLS equation

Integrable semi-discrete NLS equation: Ablowitz-Ladik (AL) lattice

$$
\mathrm{i} \frac{\partial q_{n}}{\partial t}+\left(1+\sigma\left|q_{n}\right|^{2}\right)\left(q_{n-1}+q_{n+1}\right)=0, \quad \sigma= \pm 1
$$

Review on coupled nonlinear Schrödinger equation

Coupled Nonlinear Schrödinger (CNLS) equation

$$
\begin{aligned}
& \mathrm{i} q_{1, t}+q_{1, x x}+2\left(\left|q_{1}\right|^{2}+B\left|q_{2}\right|^{2}\right) q_{1}=0 \\
& \mathrm{i} q_{2, t}+q_{2, x x}+2\left(\left|q_{2}\right|^{2}+B\left|q_{1}\right|^{2}\right) q_{2}=0
\end{aligned}
$$

- The parameter \boldsymbol{B} is related to the ellipticity angle $\boldsymbol{\theta}$ as

$$
B=\frac{2+2 \sin ^{2} \theta}{2+\cos ^{2} \theta}
$$

- For a linearly birefringent fiber $(\boldsymbol{\theta}=\mathbf{0}), \boldsymbol{B}=\frac{2}{3}$, for a circularly birefringent fiber $(\theta=\pi / 2), B=2$. Only when $B=1$, it is integrable (Manakov system)

Short pulse equation

$$
u_{x t}=u+\frac{1}{6}\left(u^{3}\right)_{x x}
$$

- Schäfer \& Wayne(2004): Derived from Maxwell equation on the setting of ultra-short optical pulse in silica optical fibers.
- Sakovich \& Sakovich (2005): A Lax pair of WKI type, linked to sine-Gordon equation through hodograph transformation;
- Matsuno (2007): Multisoliton solutions through Hirota's bilinear method
- FMO (2010): Integrable semi- and fully discretizations.

Complex short pulse equation

Complex short pulse equation

$$
q_{x t}+q+\frac{1}{2} \sigma\left(|q|^{2} q_{x}\right)_{x}=0, \quad(\sigma= \pm 1)
$$

- It is integrablewhich can be viewed as an analogue of the NLS equation in the ultra-short pulse region.
- It is more natural and appropriate in describing the propagation of the ultra-short pulses in compared with the short pulse equation
- $\sigma=1$: focusing case, bright soliton, breather and rogue wave solutions
- $\sigma=-1$: defocusing case, dark soliton

Coupled complex short pulse equation

Coupled complex short pulse equation

$$
\begin{aligned}
& q_{1, x t}+q_{1}+\frac{1}{2}\left(\left(\left|q_{1}\right|^{2}+B\left|q_{2}\right|^{2}\right) q_{1, x}\right)_{x}=0 \\
& q_{2, x t}+q_{2}+\frac{1}{2}\left(\left(\left|q_{2}\right|^{2}+B\left|q_{1}\right|^{2}\right) q_{2, x}\right)_{x}=0
\end{aligned}
$$

- The parameter \boldsymbol{B} is related to the ellipticity angle $\boldsymbol{\theta}$ same as the NLS equation.
- For a linearly birefringent fiber $(\boldsymbol{\theta}=0), B=\frac{2}{3}$, for a circularly birefringent fiber $(\boldsymbol{\theta}=\boldsymbol{\pi} / \mathbf{2}), B=\mathbf{2}$.
- Similar to the Manakov system, only when $\boldsymbol{B}=\mathbf{1}$, it is integrable.

Derivation of complex short pulse equation (I)

Maxwell's Equations:

$$
\begin{aligned}
& \nabla \times \mathrm{E}=-\frac{\partial \mathrm{B}}{\partial t}, \quad \nabla \times \mathrm{H}=-\frac{\partial \mathrm{D}}{\partial t} \\
& \mathrm{D}=\epsilon \mathrm{E}, \quad \mathrm{~B}=\mu \mathrm{H}, \quad \mathrm{D}=\mathrm{E}+\mathrm{P} .
\end{aligned}
$$

ϵ : permittivity, μ : permeability. In vacuum, $c^{2}=1 /\left(\epsilon_{0} \mu_{0}\right)$.

Derivation of complex short pulse equation (1)

Maxwell's Equations:

$$
\begin{aligned}
& \nabla \times \mathrm{E}=-\frac{\partial \mathrm{B}}{\partial t}, \quad \nabla \times \mathbf{H}=-\frac{\partial \mathrm{D}}{\partial t} \\
& \mathrm{D}=\epsilon \mathrm{E}, \quad \mathrm{~B}=\mu \mathbf{H}, \quad \mathrm{D}=\mathbf{E}+\mathrm{P}
\end{aligned}
$$

ϵ : permittivity, μ : permeability. In vacuum, $c^{2}=1 /\left(\epsilon_{0} \mu_{0}\right)$.
In the frequency-dependent media,

$$
\mathrm{D}=\epsilon \star \mathrm{E}, \quad \mathrm{~B}=\mu \star \mathbf{H}
$$

where $\epsilon=\epsilon_{0}\left(1+\chi^{(1)}(t)\right)$. In the frequency domain

$$
\begin{gathered}
\tilde{\mathbf{D}}=\tilde{\epsilon}(\omega) \tilde{\mathbf{E}}, \quad \tilde{\mathbf{B}}=\tilde{\mu}(\omega) \tilde{\mathbf{H}} \\
\nabla^{2} \mathbf{E}-\frac{1}{c^{2}} \mathbf{E}_{t t}=\mu_{0} \mathbf{P}_{t t}
\end{gathered}
$$

The induced polarization $\mathbf{P}(\mathrm{r}, t)=\mathbf{P}_{L}(\mathrm{r}, t)+\mathbf{P}_{N L}(\mathrm{r}, t)$.

Derivation of complex short pulse equation (II)

Assuming

$$
\mathrm{E}=\frac{1}{2} \mathrm{e}_{1}(E(z, t)+c . c .)
$$

where $\boldsymbol{E}(\boldsymbol{z}, \boldsymbol{t})$ is a complex-valued function.

$$
\tilde{E}_{z z}(z, \omega)+\tilde{\epsilon}(\omega) \frac{\omega^{2}}{c^{2}} \tilde{E}(z, \omega)=0
$$

where $\tilde{E}(\boldsymbol{z}, \boldsymbol{\omega})$ is the Fourier transform of $\boldsymbol{E}(\boldsymbol{z}, \boldsymbol{t})$ defined as

$$
\begin{gathered}
\tilde{E}(z, \omega)=\int_{-\infty}^{\infty} E(z, t) e^{\mathrm{i} \omega t} d t \\
\tilde{\epsilon}(\omega)=1+\tilde{\chi}^{(1)}(\omega)
\end{gathered}
$$

where $\tilde{\chi}^{(1)}(\omega)$ is the Fourier transform of $\chi^{(1)}(t)$

$$
\tilde{\chi}^{(1)}(\omega)=\int_{-\infty}^{\infty} \chi^{(1)}(t) e^{\mathrm{i} \omega t} d t
$$

Derivation of complex short pulse equation (IV)

In the range ultra-short pulse, we approximate the response function $\chi^{(1)}(\lambda)$ by

$$
\tilde{\chi}^{(1)}(\lambda)=\tilde{\chi}_{0}^{(1)} \mp \tilde{\chi}_{2}^{(1)} \lambda^{2}, \quad \tilde{\chi}_{2}^{(1)}>0, \lambda=\frac{2 \pi c}{\omega} .
$$

For Kerr media with cubic nonlinearity, $P_{N L}(z, t)=\epsilon_{0} \epsilon_{N L} E(z, t)$ $\epsilon_{N L}=\frac{3}{4} \chi_{x x x x}^{(3)}|E(z, t)|^{2}$.

$$
\tilde{E}_{z z}+\frac{1+\tilde{\chi}_{0}^{(1)}}{c^{2}} \omega^{2} \tilde{E} \mp(2 \pi)^{2} \tilde{\chi}_{2}^{(1)} \tilde{E}+\epsilon_{N L} \frac{\omega^{2}}{c^{2}} \tilde{E}=0
$$

Derivation of complex short pulse equation (V)

Applying the inverse Fourier transform yields a single nonlinear wave equation

$$
E_{z z}-\frac{1}{c_{1}^{2}} E_{t t}= \pm \frac{1}{c_{2}^{2}} E+\frac{3}{4} \chi_{x x x x}^{(3)}\left(|E|^{2} E\right)_{t t}=0
$$

Applying multiple scale expansion,

$$
E(z, t)=\epsilon E_{0}\left(\phi, z_{1}, z_{2}, \cdots\right)+\epsilon^{2} E_{1}\left(\phi, z_{1}, z_{2}, \cdots\right)+\cdots,
$$

where ϵ is a small parameter, ϕ and z_{n} are the scaled variables defined by

$$
\begin{gathered}
\phi=\frac{t-\frac{x}{c_{1}}}{\epsilon}, \quad z_{n}=\epsilon^{n} z \\
-\frac{2}{c_{1}} \frac{\partial^{2} E_{0}}{\partial \phi \partial z_{1}}= \pm \frac{1}{c_{2}^{2}} E_{0}+\frac{3}{4} \chi_{x x x x}^{(3)} \frac{\partial}{\partial \phi}\left(\left|E_{0}\right|^{2} \frac{\partial E_{0}}{\partial \phi}\right) .
\end{gathered}
$$

Focusing and defocusing compex short pulse equation

By a scale transformation

$$
x=\frac{c_{1}}{2} \phi, \quad t=c_{2} z_{1}, \quad q=\frac{c_{1} \sqrt{6 c_{2} \chi_{x x x x}^{(3)}}}{4} E_{0}
$$

we have

$$
\begin{gathered}
q_{x t} \pm q+\frac{1}{2}\left(|q|^{2} q_{x}\right)_{x}=0 \\
q_{x t}+q+\frac{1}{2} \sigma\left(|q|^{2} q_{x}\right)_{x}=0, \quad \sigma= \pm 1
\end{gathered}
$$

Focusing and defocusing compex short pulse equation

By a scale transformation

$$
x=\frac{c_{1}}{2} \phi, \quad t=c_{2} z_{1}, \quad q=\frac{c_{1} \sqrt{6 c_{2} \chi_{x x x x}^{(3)}}}{4} E_{0}
$$

we have

$$
\begin{gathered}
q_{x t} \pm q+\frac{1}{2}\left(|q|^{2} q_{x}\right)_{x}=0 \\
q_{x t}+q+\frac{1}{2} \sigma\left(|q|^{2} q_{x}\right)_{x}=0, \quad \sigma= \pm 1
\end{gathered}
$$

Coupled complex short pulse equation of mixed type

$$
\left\{\begin{array}{l}
q_{1, x t}+q_{1}+\frac{1}{2}\left(\left(\sigma_{1}\left|q_{1}\right|^{2}+\sigma_{2}\left|q_{2}\right|^{2}\right) q_{1, x}\right)_{x}=0 \\
q_{2, x t}+q_{2}+\frac{1}{2}\left(\left(\sigma_{1}\left|q_{1}\right|^{2}+\sigma_{2}\left|q_{2}\right|^{2}\right) q_{2, x}\right)_{x}=0
\end{array}\right.
$$

- focusing-focusing ($\sigma_{1}=\sigma_{2}=1$); defocusing-defocusing
($\sigma_{1}=\sigma_{2}=-1$) and focusing-defocusing ($\sigma_{1}=1 ; \sigma_{2}=-1$).
- Bright, dark and bright-dark soliton solutions and rogue wave solution $\bar{\equiv}$

Complex coupled dispersionless (CCD) equation

$$
\left\{\begin{array}{l}
q_{y s}=\rho q \\
\rho_{s} \pm \frac{1}{2}\left(|q|^{2}\right)_{y}=0
\end{array}\right.
$$

- Konno K, Kakuhata H. J Phys Soc Jpn 1995, 64, 2707, 1996;65:713
- K. Konno, Appl. Anal., 57, 209 (1995).
- Only the positive sign was studied

From the complex coupled dispersioless equation to the complex short pulse equation

$$
\left\{\begin{array}{l}
q_{y s}=\rho q \\
\rho_{s} \pm \frac{1}{2}\left(|q|^{2}\right)_{y}=0
\end{array}\right.
$$

We define a hodograph transformation

$$
d x=\rho d y \mp \frac{1}{2}|q|^{2} d s, \quad d t=-d s
$$

then we have

$$
\partial_{y}=\rho^{-1} \partial_{x}, \quad \partial_{s}=-\partial_{t} \mp \frac{1}{2}|q|^{2} \partial_{x}
$$

Accordingly, the equation $\boldsymbol{q}_{\boldsymbol{y s}}=\rho q$ gives the

$$
\begin{aligned}
& \partial_{x}\left(-\partial_{t} \mp \frac{1}{2}|q|^{2} \partial_{x}\right) q=q, \\
& q_{x t}+q \pm \frac{1}{2}\left(|q|^{2} q_{x}\right)_{x}=0 .
\end{aligned}
$$

Bilinear equations of the focusing complex short pulse equatior

Theorem

The focusing complex short pulse equation

$$
\boldsymbol{q}_{x t}+\boldsymbol{q}+\frac{1}{2}\left(|\boldsymbol{q}|^{2} \boldsymbol{q}_{x}\right)_{x}=0
$$

can be derived from bilinear equations

$$
D_{s} D_{y} f \cdot g=f g, \quad D_{s}^{2} f \cdot f=\frac{1}{2}|g|^{2}
$$

through the hodograph transformation

$$
x=y-2(\ln f)_{s}, \quad t=-s
$$

and the dependent variable transformation $q=\frac{g}{f}$

Multi bright soliton solution to the focusing complex short pulse equation

Theorem

The CSP equation admits multi-soliton solution

$$
f=\left|\begin{array}{cc}
A & I \\
-I & B
\end{array}\right|_{2 N \times 2 N}, \quad g=\left|\begin{array}{ccc}
A & I & \Phi^{T} \\
-I & B & 0^{T} \\
0 & C_{1} & 0
\end{array}\right|_{(2 N+1) \times(2 N+1)}
$$

where the elements defined respectively by

$$
\begin{gathered}
a_{i j}=\frac{1}{2\left(p_{i}^{-1}+p_{j}^{*-1}\right)} e^{\xi_{i}+\xi_{j}^{*}}, \quad b_{i j}=\frac{\alpha_{i} \alpha_{j}^{*}}{2\left(p_{j}^{-1}+p_{i}^{*-1}\right)} \\
\xi_{i}=p_{i} y+\frac{1}{p_{i}} s+\xi_{i 0}, \xi_{j}^{*}=p_{j}^{*} y+\frac{1}{p_{j}^{*}} s+\xi_{j 0}^{*}
\end{gathered}
$$

One-soliton to the focusing complex SP equation

$$
f=1+\frac{1}{4} \frac{\left|\alpha_{1}\right|^{2}\left(p_{1} \bar{p}_{1}\right)^{2}}{\left(p_{1}+\bar{p}_{1}\right)^{2}} e^{\eta_{1}+\bar{\eta}_{1}}, \quad g=\alpha_{1} e^{\eta_{1}}
$$

Let $p_{1}=p_{1 R}+\mathrm{i} p_{1 I}$

$$
\begin{gathered}
q=\frac{\alpha_{1}}{\left|\alpha_{1}\right|} \frac{2 p_{1 R}}{\left|p_{1}\right|^{2}} e^{\mathrm{i} \eta_{1 I}} \operatorname{sech}\left(\eta_{1 R}+\eta_{10}\right), \\
x=y-\frac{2 p_{1 R}}{\left|p_{1}\right|^{2}}\left(\tanh \left(\eta_{1 R}+\eta_{10}\right)+1\right), \quad t=-s
\end{gathered}
$$

When $p_{1 R}<p_{1 I}$, the solution is a smooth envelop soliton; when $p_{1 R}=p_{1 I}$, the solution becomes a cuspon solition.

Figure: Illustratioñ of smooth and čuspons soliton for focusing ESP equation

Two-component KP hierarchy and its Gram-type solution

Define the following tau-functions for two-component KP hierarchy,

$$
f_{m n}=\left|\begin{array}{cc}
A & I \\
-I & B
\end{array}\right|
$$

$$
g_{m n}=\left|\begin{array}{ccc}
A & I & \Phi^{T} \\
-I & B & 0^{T} \\
0 & -\bar{\Psi} & 0
\end{array}\right|, \quad h_{m n}=\left|\begin{array}{ccc}
A & I & 0^{T} \\
-I & B & \Psi^{T} \\
-\bar{\Phi} & 0 & 0
\end{array}\right|
$$

where \boldsymbol{A} and \boldsymbol{B} are $\boldsymbol{N} \times \boldsymbol{N}$ matrices whose elements are

$$
a_{i j}=\frac{1}{p_{i}+\bar{p}_{j}}\left(-\frac{p_{i}}{\bar{p}_{j}}\right)^{n} e^{\xi_{i}+\bar{\xi}_{j}}, \quad b_{i j}=\frac{1}{q_{i}+\bar{q}_{j}}\left(-\frac{q_{i}}{\bar{q}_{j}}\right)^{m} e^{\eta_{i}+\bar{\eta}_{j}},
$$

with

$$
\begin{aligned}
\xi_{i}=\frac{1}{p_{i}} x_{-1}+p_{i} x_{1}+\xi_{i 0}, & \bar{\xi}_{j}=\frac{1}{\bar{p}_{j}} x_{-1}+\bar{p}_{j} x_{1}+\bar{\xi}_{j 0}, \\
\eta_{i}=q_{i} y_{1}+\eta_{i 0}, & \bar{\eta}_{j}=\bar{q}_{j} y_{1}+\bar{\eta}_{j 0},
\end{aligned}
$$

Two-component KP hierarchy and its Gram-type solution

$\boldsymbol{\Phi}, \boldsymbol{\Psi}, \overline{\boldsymbol{\Phi}}$ and $\overline{\boldsymbol{\Psi}}$ are \boldsymbol{N}-component row vectors

$$
\begin{aligned}
& \Phi=\left(p_{1}^{n} e^{\xi_{1}}, \cdots, p_{N}^{n} e^{\xi_{N}}\right), \bar{\Phi}=\left(\left(-\bar{p}_{1}\right)^{-n} e^{\bar{\xi}_{1}}, \cdots,\left(-\bar{p}_{N}\right)^{-n} e^{\bar{\xi}_{N}}\right) \\
& \Psi=\left(q_{1}^{m} e^{\eta_{1}}, \cdots, q_{N}^{m} e^{\eta_{N}}\right), \bar{\Psi}=\left(\left(-\bar{q}_{1}\right)^{-m} e^{\bar{\eta}_{1}}, \cdots,\left(-\bar{q}_{N}\right)^{-m} e^{\bar{\eta}_{N}}\right) .
\end{aligned}
$$

Then the following bilinear equations hold

$$
\begin{gathered}
\frac{1}{2} D_{x_{1}} D_{y_{1}} f_{n m} \cdot f_{n m}=-g_{n m} h_{n m}, \\
D_{x_{-1}} g_{n m} \cdot f_{n m}=g_{n-1, m} f_{n+1, m}, \\
\left(D_{x_{1}} D_{x_{-1}}-2\right) g_{n m} \cdot f_{n m}=-D_{x_{1}} g_{n-1, m} \cdot f_{n+1, m}, \\
D_{x_{1}} g_{n, m+1} \cdot f_{n+1, m}=g_{n+1, m+1} f_{n m} .
\end{gathered}
$$

Reductions to the CSP equation (1)

Recall the bilinear equation of the CSP equation

$$
D_{s} D_{y} f \cdot g=f g, \quad D_{s}^{2} f \cdot f=\frac{1}{2}|g|^{2}
$$

Task: How to get them from the following bilinear equations of two-component KP?

$$
\begin{gathered}
\frac{1}{2} D_{x_{1}} D_{y_{1}} f_{n m} \cdot f_{n m}=-g_{n m} h_{n m} \\
D_{x_{-1}} g_{n m} \cdot f_{n m}=g_{n-1, m} f_{n+1, m} \\
\left(D_{x_{1}} D_{x_{-1}}-2\right) g_{n m} \cdot f_{n m}=-D_{x_{1}} g_{n-1, m} \cdot f_{n+1, m} \\
D_{x_{1}} g_{n, m+1} \cdot f_{n+1, m}=g_{n+1, m+1} f_{n m}
\end{gathered}
$$

Reductions to the CSP equation (II)

Under the condition $\boldsymbol{q}_{\boldsymbol{j}}=\bar{p}_{j}, \quad \overline{\boldsymbol{q}}_{\boldsymbol{j}}=\boldsymbol{p}_{\boldsymbol{j}}$ we have

$$
\begin{aligned}
& f_{n+1, m+1}=f_{n m}, \quad g_{n+1, m+1}=-g_{n m} \\
& \partial_{x_{1}} f_{n m}=\partial_{y_{1}} f_{n m}, \quad \partial_{x_{1}} g_{n m}=\partial_{y_{1}} g_{n m}
\end{aligned}
$$

it then follows

$$
\begin{aligned}
\left(D_{x_{1}} D_{x_{-1}}-2\right) g_{n m} \cdot f_{n m} & =D_{x_{1}} g_{n, m+1} \cdot f_{n+1, m} \\
& =g_{n+1, m+1} f_{n m} \\
& =-g_{n m} f_{n m}
\end{aligned}
$$

from
$\left(D_{x_{1}} D_{x_{-1}}-2\right) g_{n m} \cdot f_{n m}=-D_{x_{1}} g_{n-1, m} \cdot f_{n+1, m}$,

$$
D_{x_{1}} g_{n, m+1} \cdot f_{n+1, m}=g_{n+1, m+1} f_{n m}
$$

Reductions to the CSP equation (III)

$$
\partial_{x_{1}} f_{n m}=\partial_{y_{1}} f_{n m}, \quad \partial_{x_{1}} g_{n m}=\partial_{y_{1}} g_{n m}
$$

From

$$
\frac{1}{2} D_{x_{1}} D_{y_{1}} f_{n m} \cdot f_{n m}=-g_{n m} h_{n m}
$$

it then follows

$$
\frac{1}{2} D_{x_{1}}^{2} f_{n m} \cdot f_{n m}=-g_{n m} h_{n m}
$$

Let $\boldsymbol{f}=\boldsymbol{f}_{\mathbf{0 0}}, \boldsymbol{g}=\boldsymbol{g}_{\mathbf{0 0}}, \boldsymbol{h}=\boldsymbol{h}_{\mathbf{0 0}}$, the above bilinear equations read

$$
\begin{aligned}
& \left(D_{x_{1}} D_{x_{-1}}-1\right) g \cdot f=0 \\
& \frac{1}{2} D_{x_{1}}^{2} f \cdot f=-g h
\end{aligned}
$$

Reductions to the CSP equation (IV)

By taking

$$
\bar{p}_{j}=p_{j}^{*}, \quad \bar{\xi}_{j 0}=\xi_{j 0}^{*}, \quad \bar{\eta}_{j 0}=\eta_{j 0}^{*}
$$

we can easily check that \boldsymbol{f} is real and $\boldsymbol{h}=-\boldsymbol{g}^{*}$. Then

$$
\begin{gathered}
\left(D_{x_{1}} D_{x_{-1}}-1\right) g \cdot f=0 \\
D_{x_{1}}^{2} f \cdot f=2|g|^{2}
\end{gathered}
$$

Reductions to the CSP equation (IV)

By taking

$$
\bar{p}_{j}=p_{j}^{*}, \quad \bar{\xi}_{j 0}=\xi_{j 0}^{*}, \quad \bar{\eta}_{j 0}=\eta_{j 0}^{*}
$$

we can easily check that \boldsymbol{f} is real and $\boldsymbol{h}=-\boldsymbol{g}^{*}$. Then

$$
\begin{gathered}
\left(D_{x_{1}} D_{x_{-1}}-1\right) g \cdot f=0 \\
D_{x_{1}}^{2} f \cdot f=2|g|^{2}
\end{gathered}
$$

By variable transformation

$$
s=2\left(x_{1}+y_{1}\right), \quad y=\frac{1}{2}\left(x_{-1}+y_{-1}\right)
$$

we arrive at the bilinear equations for the CSP equation. The multi-soliton solution can be obtained by a reparametrization

$$
p_{i} \rightarrow 2 p_{i}^{-1}, \quad p_{i}^{*} \rightarrow 2 p_{i}^{*-1}
$$

Lax pair for the CCD and CSP equations

It is known that the CCD equation admits the following Lax pair

$$
\Psi_{y}=U(\rho, q ; \lambda) \Psi, \quad \Psi_{s}=V(q ; \lambda) \Psi
$$

where

$$
U(\rho, q ; \lambda)=\left[\begin{array}{cc}
-\frac{\mathrm{i} \rho}{\lambda} & -\frac{q_{y}^{*}}{\lambda} \\
\frac{q_{y}}{\lambda} & \frac{\mathrm{i} \rho}{\lambda}
\end{array}\right], V(q ; \lambda)=\left[\begin{array}{cc}
\frac{\mathrm{i}}{4} \lambda & \frac{\mathrm{i} q^{*}}{2} \\
\frac{\mathrm{i} q}{2} & -\frac{\mathrm{i}}{4} \lambda
\end{array}\right]
$$

Through the reciprocal transformation:

$$
\mathrm{d} x=\rho \mathrm{d} y-\frac{1}{2}|q|^{2} \mathrm{~d} s, \quad \mathrm{~d} t=-\mathrm{d} s
$$

one can obtain the CSP equation and its Lax pair:

$$
\begin{aligned}
\Psi_{x} & =\left[\begin{array}{cc}
-\frac{i}{\lambda} & -\frac{q_{x}^{*}}{\lambda} \\
\frac{q_{x}}{\lambda} & \frac{\mathrm{i}}{\lambda}
\end{array}\right] \Psi, \\
\Psi_{t} & =\left[\begin{array}{cc}
-\frac{\mathrm{i}}{4} \lambda+\frac{\mathrm{i}|q|^{2}}{2 \lambda} & -\frac{\mathrm{i} q^{*}}{2}+\frac{|q|^{2} q_{x}^{*}}{2 \lambda} \\
-\frac{\mathrm{iq}}{2}-\frac{|q|^{2} q_{x}}{2 \lambda} & \frac{\mathrm{i}}{4} \lambda-\frac{\mathrm{i}|q|^{2}}{2 \lambda}
\end{array}\right] \Psi .
\end{aligned}
$$

Darboux transformation for the focusing CSP equation

Theorem

The Darboux matrix

$$
T=I+\frac{\lambda_{1}^{*}-\lambda_{1}}{\lambda-\lambda_{1}^{*}} P_{1}, P_{1}=\frac{\left|y_{1}\right\rangle\left\langle y_{1}\right|}{\left\langle y_{1} \mid y_{1}\right\rangle},\left|y_{1}\right\rangle=\left[\begin{array}{l}
\psi_{1}\left(x, t ; \lambda_{1}\right) \\
\phi_{1}\left(x, t ; \lambda_{1}\right)
\end{array}\right]
$$

can convert the Lax pair of the CSP eq. $\Psi_{y}=\boldsymbol{U}(\boldsymbol{q} ; \boldsymbol{\lambda}) \Psi, \Psi_{s}=\boldsymbol{V}(\boldsymbol{q} ; \boldsymbol{\lambda}) \Psi$ into a new system

$$
\Psi[1]_{y}=U(q ; \lambda) \Psi[1], \quad \Psi[1]_{s}=V(q ; \lambda) \Psi[1] .
$$

The Bäcklund transformations between $(q[1], \rho[1])$ and (q, ρ) are given through

$$
\begin{aligned}
& \rho[1]=\rho-2 \ln _{y s}\left(\frac{\left\langle y_{1} \mid y_{1}\right\rangle}{\lambda_{1}^{*}-\lambda_{1}}\right) \\
& q[1]=q+\frac{\left(\lambda_{1}^{*}-\lambda_{1}\right) \psi_{1}^{*} \phi_{1}}{\left\langle y_{1} \mid y_{1}\right\rangle}
\end{aligned}
$$

Single breather solution

We start with a seed solution

$$
\rho[0]=-\frac{\gamma}{2}, q[0]=\frac{\beta}{2} \mathrm{e}^{\mathrm{i} \theta}, \theta=y+\frac{\gamma}{2} s
$$

Then we can get the single breather solution

$$
\begin{gathered}
q[1]=\frac{\beta}{2}\left[\frac{\cosh 2\left(\theta_{1, R}-\mathrm{i} \varphi_{1, I}\right) \cosh \left(\varphi_{1, R}\right)+\sin 2\left(\theta_{1, I}+\mathrm{i} \varphi_{1, R}\right) \sin \left(\varphi_{1, I}\right)}{\cosh \left(2 \theta_{1, R}\right) \cosh \left(\varphi_{1, R}\right)-\sin \left(2 \theta_{1, I}\right) \sin \left(\varphi_{1, I}\right)}\right] \\
x=-\frac{\gamma}{2} y-\frac{\beta^{2}}{8} s-2 \ln _{s}\left[\cosh \left(2 \theta_{1, R}\right) \cosh \left(\varphi_{1, R}\right)-\sin \left(2 \theta_{1, I}\right) \sin \left(\varphi_{1, I}\right)\right], \\
t=-s,
\end{gathered}
$$

Multi-breather solution to the CSP equation

Generally, N-breather solution:

$$
\begin{aligned}
q[N] & =\frac{\beta}{2}\left[\frac{\operatorname{det}(G)}{\operatorname{det}(M)}\right] \mathrm{e}^{\mathrm{i} \theta}, \\
x & =-\frac{\gamma}{2} y-\frac{\beta^{2}}{8} s-2 \ln _{s}(\operatorname{det}(M)), t=-s
\end{aligned}
$$

where

$$
\begin{aligned}
M= & \left(\left[\frac{\mathrm{e}^{2\left(\theta_{i}^{*}+\theta_{j}\right)}}{\xi_{i}^{*}-\xi_{j}}+\frac{\mathrm{e}^{2 \theta_{i}^{*}}}{\xi_{i}^{*}-\chi_{j}}+\frac{\mathrm{e}^{2 \theta_{j}}}{\chi_{i}^{*}-\xi_{j}}+\frac{1}{\chi_{i}^{*}-\chi_{j}}\right] \mathrm{e}^{-\left(\theta_{i}^{*}+\theta_{j}\right)}\right)_{1 \leq i, j \leq N} \\
G= & \left(\left[\frac{\xi_{i}^{*}+\gamma}{\xi_{j}+\gamma} \frac{\mathrm{e}^{2\left(\theta_{i}^{*}+\theta_{j}\right)}}{\xi_{i}^{*}-\xi_{j}}+\frac{\xi_{i}^{*}+\gamma}{\chi_{j}+\gamma} \frac{\mathrm{e}^{2 \theta_{i}^{*}}}{\xi_{i}^{*}-\chi_{j}}+\frac{\chi_{i}^{*}+\gamma}{\xi_{j}+\gamma} \frac{\mathrm{e}^{2 \theta_{j}}}{\chi_{i}^{*}-\xi_{j}}\right.\right. \\
& \left.\left.+\frac{\chi_{i}^{*}+\gamma}{\chi_{j}+\gamma} \frac{1}{\chi_{i}^{*}-\chi_{j}}\right] \mathrm{e}^{-\left(\theta_{i}^{*}+\theta_{j}\right)}\right)_{1 \leq i, j \leq N}
\end{aligned}
$$

Rogue wave solution to the CSP equation

$$
\begin{aligned}
q[1] & =\frac{\beta}{2}\left[1+\frac{16\left(\mathrm{i} \beta^{2} y-\beta^{2}-\gamma^{2}\right)}{\beta^{2}(2 y-\gamma s)^{2}+\beta^{4} s^{2}+4 \gamma^{2}+4 \beta^{2}}\right] \mathrm{e}^{\mathrm{i} \theta}, \\
x & =-\frac{\gamma}{2} y-\frac{\beta^{2}}{8} s-\frac{4 \beta^{2}\left(\gamma^{2} s+\beta^{2} s-2 \gamma y\right)}{\beta^{2}(2 y-\gamma s)^{2}+\beta^{4} s^{2}+4 \gamma^{2}+4 \beta^{2}}, t=-s .
\end{aligned}
$$

- $\boldsymbol{\beta}^{2}<\frac{\gamma^{2}}{3}$, then we can obtain the regular rogue wave solution
- $\beta^{2}=\frac{\gamma^{2}}{3}$, then we can obtain the cuspon-type rogue wave
- $\boldsymbol{\beta}^{2}>\frac{\gamma^{2}}{3}$, then we can obtain the loop-type rogue wave solution

Rogue wave solution to the focusing complex SP equation

First and second-order rogue wave solutions

Figure: Illustration for the 1st and 2nd rogue waves of the focusing CSP equation

Bilinear equations of the defocusing complex short pulse equation

Theorem

The complex short pulse equation

$$
q_{x t}+q-\frac{1}{2}\left(|q|^{2} q_{x}\right)_{x}=0
$$

can be derived from bilinear equations

$$
\left(D_{s} D_{y}-\mathrm{i} \omega D_{y}+\mathrm{i} \kappa D_{s}\right) g \cdot f=0, \quad D_{s}^{2} f \cdot f=\frac{1}{2} \omega^{2}\left(f^{2}-|g|^{2}\right)
$$

through the hodograph transformation

$$
x=\omega \kappa y+\frac{\omega}{2} s-2(\ln f)_{s}, \quad t=-s
$$

and the dependent variable transformation $q=\frac{g}{f} e^{\mathrm{i}(\kappa y-\omega s)}$

Multi dark soliton to the defocusing complex short pulse equation

$$
f=|A|, \quad g=\left|A^{\prime}\right|
$$

where the elements defined respectively by

$$
\begin{gathered}
a_{i j}=\delta_{i j}+\frac{1}{p_{i}+p_{j}^{*}} e^{\xi_{i}+\xi_{j}^{*}}, \quad a_{i j}^{\prime}=\delta_{i j}+\left(-\frac{p_{i}}{p_{j}^{*}}\right) \frac{1}{p_{i}+p_{j}^{*}} e^{\xi_{i}+\xi_{j}^{*}} \\
\xi_{i}=\frac{\omega}{2} p_{i} s+q_{i} \kappa y+\xi_{i 0}, \quad \xi_{i}^{*}=\frac{\omega}{2} p_{i}^{*} s+q_{i}^{*} \kappa y+\xi_{i 0}^{*} \\
q_{i}=\frac{1}{p_{i}-\mathrm{i}}, \quad q_{i}^{*}=\frac{1}{p_{i}^{*}+\mathrm{i}}
\end{gathered}
$$

where $\left|p_{i}\right|=1=e^{\mathrm{i} \phi}, p_{i}^{*}=e^{-\mathrm{i} \phi}$.

Reduction from the KP hierarchy

Define the following tau-functions for the single KP hierarchy with negative flow

$$
\tau_{n k}=\left|m_{i j}^{n k}\right|_{1 \leq i, j \leq N}=\left|\delta_{i j}+\frac{1}{p_{i}+\bar{p}_{j}} \varphi_{i}^{n k} \psi_{j}^{n k}\right|
$$

where

$$
\begin{gathered}
\varphi_{i}^{n k}=p_{i}^{n}\left(p_{i}-a\right)^{k} e^{\xi_{i}} \\
\psi_{j}^{n k}=\left(-\frac{1}{\bar{p}_{j}}\right)^{n}\left(-\frac{1}{\bar{p}_{j}+a}\right)^{k} e^{\bar{\xi}_{j}}
\end{gathered}
$$

with

$$
\begin{aligned}
\xi_{i} & =\frac{1}{p_{i}} x_{-1}+p_{i} x_{1}+\frac{1}{p_{i}-a} t_{a}+\xi_{i 0} \\
\bar{\xi}_{j} & =\frac{1}{\bar{p}_{j}} x_{-1}+\bar{p}_{j} x_{1}+\frac{1}{\bar{p}_{j}+a} t_{a}+\bar{\xi}_{j 0}
\end{aligned}
$$

Reduction from the KP hierarchy

Then the following bilinear equations hold

$$
\begin{aligned}
& \left(\frac{1}{2} D_{x_{1}} D_{x_{-1}}-1\right) \tau_{n k} \cdot \tau_{n k}=-\tau_{n+1, k} \tau_{n-1, k} \\
& \left(a D_{t_{a}}-1\right) \tau_{n+1, k} \cdot \tau_{n k}=-\tau_{n+1, k-1} \tau_{n, k+1}
\end{aligned}
$$

$\left(D_{x_{1}}\left(a D_{t_{a}}-1\right)-2 a\right) \tau_{n+1, k} \cdot \tau_{n k}=\left(D_{x_{1}}-2 a\right) \tau_{n+1, k-1} \cdot \tau_{n, k+1}$
Objective bilinear equations:
$\left(D_{s} D_{y}-\mathrm{i} \omega D_{y}+\mathrm{i} \kappa D_{s}\right) g \cdot f=0, \quad D_{s}^{2} f \cdot f=\frac{1}{2} \omega^{2}\left(f^{2}-|g|^{2}\right)$,

Reductions to the dCSP equation

By taking

$$
\bar{p}_{j}=\frac{1}{p_{j}}, a=\mathrm{i}
$$

we have

$$
\begin{gathered}
p_{i}+\bar{p}_{i}=\frac{1}{p_{i}}+\frac{1}{\bar{p}_{i}} \\
-\frac{\bar{p}_{i}}{p_{i}}\left(-\frac{p_{i}-a}{\bar{p}_{i}+a}\right)^{2}=1
\end{gathered}
$$

thus $\tau_{n k}$ satisfies the reduction conditions

$$
\begin{gathered}
\partial_{x_{1}} \tau_{n k}=\partial_{x_{-1}} \tau_{n k} \\
\tau_{n-1, k+2}=\tau_{n k}
\end{gathered}
$$

Then the first bilinear equation becomes

$$
\left(\frac{1}{2} D_{x_{1}}^{2}-1\right) \tau_{n k} \cdot \tau_{n k}=-\tau_{n+1, k} \tau_{n-1, k}
$$

Reductions to the dCSP equation

Moeover, from the other bilinear equations and the above reductions, we have

$$
\begin{aligned}
& \left(D_{x_{1}}\left(a D_{t_{a}}-1\right)-2 a\right) \tau_{n+1, k} \cdot \tau_{n k} \\
= & \left(D_{x_{1}}-2 a\right) \tau_{n+1, k-1} \cdot \tau_{n, k+1}\left(=\tau_{n+1, k-1}\right) \\
= & -2 a \tau_{n+1, k-1} \cdot \tau_{n+1, k-1}\left(=\tau_{n, k+1}\right) \\
= & 2 a\left(a D_{t_{a}}-1\right) \tau_{n+1, k} \cdot \tau_{n k}
\end{aligned}
$$

i.e.,

$$
\left(D_{x_{1}}\left(D_{t_{a}}+\mathrm{i}\right)-2 \mathrm{i} D_{t_{a}}\right) \tau_{n+1, k} \cdot \tau_{n k}=0
$$

Reductions to the dCSP equation

By taking $\left|p_{i}\right|=1, \bar{\xi}_{j 0}=\xi_{j 0}^{*}$,where * means complex conjugate, we have

$$
\begin{gathered}
\tau_{n 0}^{*}=\tau_{-n, 0} \\
\tau_{n 0}=\left|\delta_{i j}+\frac{1}{p_{i}+p_{j}^{*}}\left(-\frac{p_{i}}{p_{j}^{*}}\right)^{n} e^{\xi_{i}+\xi_{j}^{*}}\right|_{1 \leq i, j \leq N}
\end{gathered}
$$

By defining

$$
f=\tau_{00}, g=\tau_{10}
$$

we get

$$
\begin{gathered}
\left(\frac{1}{2} D_{x_{1}}^{2}-1\right) f \cdot f=-g g^{*} \\
\left(D_{x_{1}} D_{t_{a}}+\mathrm{i} D_{x_{1}}-2 \mathrm{i} D_{t_{a}}\right) g \cdot f=0
\end{gathered}
$$

Finally, by setting $t_{a}=\boldsymbol{\kappa} \boldsymbol{y}, \mathbf{2} \boldsymbol{x}_{\mathbf{1}}=\boldsymbol{\omega} \boldsymbol{s}$, the above bilinear equations are converted into

$$
\left(D_{s}^{2}-\frac{\omega^{2}}{2}\right) f \cdot f=-\frac{\omega^{2}}{2} g g^{*}
$$

Summary for the focusing and defocusing CSP equation

- The bright soliton solution to the focusing CSP equation can be obtained from the reduction of the two-component KP hierarchy or from the Darboux transformation
- The rogue wave solution to the focusing CSP equation can be obtained from the Darboux transformation, we are working on the higher order rogue wave solutions by Hirota's bilinear method
- The dark soliton solution to the defocusing CSP equation can be obtained from the reduction of the one-component KP hierarchy or from the Darboux transformation

Integrable semi-discrete complex short pulse equation

Theorem

Bilinear equations

$$
\left\{\begin{array}{l}
\frac{1}{a} D_{s}\left(g_{k+1} \cdot f_{k}-g_{k} \cdot f_{k+1}\right)=g_{k+1} f_{k}+g_{k} f_{k+1} \\
D_{s}^{2} f_{k} \cdot f_{k}=\frac{1}{2} g_{k} g_{k}^{*}
\end{array}\right.
$$

give semi-discrete complex SP equation

$$
\left\{\begin{aligned}
\frac{d}{d t}\left(q_{k+1}-q_{k}\right) & =\frac{1}{2}\left(x_{k+1}-x_{k}\right)\left(q_{k+1}+q_{k}\right) \\
\frac{d}{d t}\left(x_{k+1}-x_{k}\right) & =-\frac{1}{2}\left(\left|q_{k+1}\right|^{2}-\left|q_{k}\right|^{2}\right)
\end{aligned}\right.
$$

through transformations

$$
q_{k}=\frac{g_{k}}{f_{k}}, \quad x_{k}=2 k a-2\left(\ln f_{k}\right)_{s}
$$

Multi-soliton solutions to the semi-discrete CSP equation

Multi-soliton solution:

$$
f_{k}=\left|\begin{array}{cc}
A & I \\
-I & B
\end{array}\right|, \quad g_{k}=\left|\begin{array}{ccc}
A & I & \Phi^{T} \\
-I & B & 0^{T} \\
0 & C_{1} & 0
\end{array}\right|
$$

where the elements defined respectively by

$$
\begin{gathered}
a_{i j}=\frac{1}{2\left(p_{i}^{-1}+p_{j}^{*-1}\right)} e^{\xi_{i}+\bar{\xi}_{j}}, \quad b_{i j}=\frac{\alpha_{i}^{*} \alpha_{j}}{2\left(p_{j}^{-1}+p_{i}^{*-1}\right)} \\
e^{\xi_{i}}=\left(\frac{1+a p_{i}}{1-a p_{i}}\right)^{k} \exp \left(\frac{1}{p_{i}} s+\xi_{i 0}\right), e^{\xi_{j}^{*}}=\left(\frac{1+a p_{j}^{*}}{1-a p_{j}^{*}}\right)^{k} \exp \left(\frac{1}{p_{i}^{*}} s+\bar{\xi}_{j 0}\right)
\end{gathered}
$$

Lax pair to the semi-discrete CSP equation

$$
\Psi_{k+1}=U_{k} \Psi_{k}, \quad \Psi_{k, t}=V_{k} \Psi_{k}
$$

with

$$
\begin{gathered}
U_{k}=\left(\begin{array}{cc}
1-\mathrm{i} \lambda \delta_{k} & -\mathrm{i} \lambda\left(q_{k+1}-q_{k}\right) \\
-\mathrm{i} \lambda\left(q_{k+1}^{*}-q_{k}^{*}\right) & 1+\mathrm{i} \lambda \delta_{k}
\end{array}\right) \\
V_{k}=\left(\begin{array}{cc}
\frac{\mathrm{i}}{4 \lambda} & -\frac{1}{2} q_{k} \\
\frac{1}{2} q_{k}^{*} & -\frac{i}{4 \lambda}
\end{array}\right)
\end{gathered}
$$

- The compatibility condition $\boldsymbol{d} \boldsymbol{U}_{\boldsymbol{k}} / \boldsymbol{d} \boldsymbol{t}+\boldsymbol{U}_{\boldsymbol{k}} \boldsymbol{V}_{\boldsymbol{k}}-\boldsymbol{V}_{\boldsymbol{k}+\boldsymbol{1}} \boldsymbol{U}_{\boldsymbol{k}}=\mathbf{0}$ gives the semi-discrete CSP equation

Fully discrete complex short pulse equation

Bilinear equations

$$
\left\{\begin{array}{l}
g_{k+1}^{l+1} f_{k}^{l}-g_{k}^{l+1} f_{k+1}^{l}-g_{k+1}^{l} f_{k}^{l+1}+g_{k}^{l} f_{k+1}^{l+1} \\
=a b\left(g_{k+1}^{l+1} f_{k}^{l}+g_{k}^{l+1} f_{k+1}^{l}+g_{k+1}^{l} f_{k}^{l+1}+g_{k}^{l} f_{k+1}^{l+1}\right) \\
f_{k}^{l+1} f_{k}^{l-1}-f_{k}^{l} f_{k}^{l}=b^{2} g_{k}^{l} \bar{g}_{k}^{l}
\end{array}\right.
$$

give the fully discrete complex SP equation

$$
\left\{\begin{array}{l}
(1-a b)\left(q_{k}^{l}+q_{k+1}^{l+1}\right)=(1+a b)\left(q_{k}^{l+1}+q_{k+1}^{l}\right)\left(1+\left(\delta_{k}^{l}-2 a\right) b\right) \\
\frac{1+\left(\delta_{k}^{l}-2 a\right) b}{1+\left(\delta_{k}^{l-1}-2 a\right) b}=\frac{1+b^{2} q_{k}^{l} \bar{q}_{k}^{l}}{1+b^{2} q_{k+1}^{l} \bar{q}_{k+1}^{l}}
\end{array}\right.
$$

through transformations

$$
q_{k}^{l}=\frac{g_{k}^{l}}{f_{k}^{l}}, \quad \delta_{k}^{l}=2 a+\frac{1}{b}\left(\frac{f_{k}^{l+1} f_{k+1}^{l}}{f_{k+1}^{l+1} f_{k}^{l}}-1\right)
$$

Conclusion and further topics

- We have proposed a focusing and defocusing complex short pulse equation to describe the propagation of ultra-short pulse in optical fibers
- The multi-bright and multi-dark soliton solutions are obtained from the reductions of the KP hierarchies
- The soliton, breather and rogue wave solutions are constructed via the Darboux transformation

Conclusion and further topics

- We have proposed a focusing and defocusing complex short pulse equation to describe the propagation of ultra-short pulse in optical fibers
- The multi-bright and multi-dark soliton solutions are obtained from the reductions of the KP hierarchies
- The soliton, breather and rogue wave solutions are constructed via the Darboux transformation
- Further topic 1: Physical applications
- Further topic 2: Self-adaptive moving method based on integrable discretizations
- Further topic 3: Studies for the coupled CSP equation

