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Outline of the talk

Derivation of the complex short pulse (CSP) equation from nonlinear optics
Bright, breather and rogue wave solutions to the focusing CSP equation.
Dark soliton solution to the defocusing CSP equation

Semi- and fully discrete analogues of the CSP equation
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Review on the Nonlinear Schrodinger equation

Nonlinear Schrodinger (NLS) equation

igi + Que + 0'2|q|2q =0, o==1

@ o = 1: focusing case, possessing bright soliton
@ o = —1: defocusing case, possessing dark soliton

@ Rogue wave solution for the focusing NLS equation
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Review on the Nonlinear Schrodinger equation

Nonlinear Schrodinger (NLS) equation

igi + Que + 0'2|q|2q =0, o==1

@ o = 1: focusing case, possessing bright soliton

@ o = —1: defocusing case, possessing dark soliton

@ Rogue wave solution for the focusing NLS equation
Integrable semi-discrete NLS equation: Ablowitz-Ladik (AL) lattice
.9q

1 8: +(1+U|qn|2)(qn—1+qn+1) =0, oc==1
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Review on coupled nonlinear Schrodinger equation

Coupled Nonlinear Schrodinger (CNLS) equation
ig1,t + qr,ee + 2(la1|* + Blaz|*)a1 = 0,
ig2, + 2,22 + 2(1g2* + Blg1|*) gz = 0.

@ The parameter B is related to the ellipticity angle 0 as

2 + 2sin® 6
B— —+ 2sin .
2 + cos? 6
@ For a linearly birefringent fiber (8 = 0), B = % for a circularly

birefringent fiber (6 = w/2), B = 2. Only when B =1, it is
integrable (Manakov system)
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Short pulse equation

1
Uzt = U + g(u3)wm

@ Schifer & Wayne(2004): Derived from Maxwell equation on the setting of
ultra-short optical pulse in silica optical fibers.

@ Sakovich & Sakovich (2005): A Lax pair of WKI type, linked to sine-Gordon
equation through hodograph transformation;

@ Matsuno (2007): Multisoliton solutions through Hirota's bilinear method

@ FMO (2010): Integrable semi- and fully discretizations.
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Complex short pulse equation

Complex short pulse equation

1
Gzt +q + 50'(|Q|2q;c)w =0, (oc==1)

@ It is integrablewhich can be viewed as an analogue of the NLS equation in
the ultra-short pulse region.

@ It is more natural and appropriate in describing the propagation of the
ultra-short pulses in compared with the short pulse equation

@ o = 1: focusing case, bright soliton, breather and rogue wave solutions

@ o = —1: defocusing case, dark soliton
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Coupled complex short pulse equation

Coupled complex short pulse equation

1
q1,0t +q1 + 3 ((|‘I1|2 + B|‘I2|2)Q1,w)m =0,

1
Dot @2+ 5 ((Ig2I* + Blg1]*)g2,c), = 0.

@ The parameter B is related to the ellipticity angle 8 same as the NLS
equation.

@ For a linearly birefringent fiber (8 = 0), B = % for a circularly birefringent
fiber (6 = w/2), B = 2.

@ Similar to the Manakov system, only when B = 1, it is integrable.
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Derivation of complex short pulse equation (1)

Maxwell’s Equations:

0B
VXE=—-—, VXH=——-.
ot ot

D=¢E, B=puH, D=E+P.

€: permittivity, u: permeability. In vacuum, ¢? = 1/(eopo).
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Derivation of complex short pulse equation (1)

Maxwell’s Equations:

0B
VXE=—-—, VXH=———.
ot ot
D=¢E, B=puyH, D=E+4+P.

€: permittivity, u: permeability. In vacuum, ¢? = 1/(eopo).
In the frequency-dependent media,

D=exE, B=puxH.
where € = €o(1 + x™(t)). In the frequency domain
D =éw)E, B=j(w)H.
2 1
V°E — —Ey = poPy
c

The induced polarization P(r,t) = Pr(r,t) + Pnr(r,t).
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Derivation of complex short pulse equation (I1)

Assuming

1
E = 21 (E(z,t) + c.c.) ,
where E(z,t) is a complex-valued function.
E..(z,w) + e(w) E(z w)=0,
where E(z,w) is the Fourier transform of E(z,t) defined as

E(z,w) = / E(z,t)e*tdt,

éw) =14+ xD(w).
where X(1) (w) is the Fourier transform of x(1)(t)

(W) = / X (et dt .
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Derivation of complex short pulse equation (V)

In the range ultra-short pulse, we approximate the response function x(l)()\) by

2mce
D) = xPFA?, %V >0 = —.
For Kerr media with cubic nonlinearity, Pnr(2,t) = eoenrE(z,t)
ENL = gi)mle(Z t)|2
~(1) 2
1 ~ ~ -
zz + +7 2E:F(27T)2)2g1)E + 6NL(.‘Jiz-E =0.
c
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Derivation of complex short pulse equation (V)

Applying the inverse Fourier transform yields a single nonlinear wave equation

1 1 3
E.. — Ey=+E+ x$  (EPE), =o0.
cqi cs 4
Applying multiple scale expansion,

E(zat) = 6EO(¢az19z27"°) +62E1(¢,z1,22,---) +eeey,

where € is a small parameter, ¢ and z,, are the scaled variables defined by

t_ =
¢ = Loz, =€z
€
2 9%E 1 3 o OE
o ¥ = i?EO + 7X:(c3w)a:m7 (I‘E0|2 O) .
c1 00z, cs 4 o¢ o¢
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Focusing and defocusing compex short pulse equation
By a scale transformation
C1Y/ 662X:(t:;:)ww E

C1
$=E¢, t = c2z1, qu 0

we have 1
Gortq + (lg)%qz), =0

1 2
th+q+§‘7(|Q| 4z), =0, o ==l
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Focusing and defocusing compex short pulse equation

By a scale transformation

c1 C1y/ 602X:(t:;:)ww
T = Eqsa t=cpz1, q=———F

we have

1
Qettq + 5 (|Q|2qm)m =0

1 2
th+Q+§0'(|¢I| Qw)m:09 o = *1.

Coupled complex short pulse equation of mixed type

1
Tt +qit g ((e1lq1|® + o2lq21*)q1,2) , = O,

1
92,0t + q2 + 2 ((o1la1|® + cfz|€lz|2)€12,ac)m =0

o focusing-focusing (61 = o2 = 1); defocusing-defocusing
(o1 = 02 = —1) and focusing-defocusing (o1 = 1302 = —1)

@ Bright, dark and bright-dark soliton solutions and . rogue wave solution
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Complex coupled dispersionless (CCD) equation

qys = pPq,

1
Psi§(|(I|2)y =0

@ Konno K, Kakuhata H. J Phys Soc Jpn 1995, 64, 2707, 1996,65:713
@ K. Konno, Appl. Anal., 57, 209 (1995).
@ Only the positive sign was studied

B.-F. Feng (UTRGV) Complex short pulse equation October 20, 2015 13 / 42



From the complex coupled dispersioless equation to the

complex short pulse equation

qys = P9,
1 2
Pt (lal%)y =0
We define a hodograph transformation
1
dr = pdy:|25|q|2ds, dt = —d s,

then we have 1
a’y = p_18w9 9, = _at:':5|QI28m

Accordingly, the equation g, s = pq gives the
1
am(—8t$§|q|28m)q =q,

1
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Bilinear equations of the focusing complex short pulse equation

The focusing complex short pulse equation

Qot +a+ % (l91°q=), =0
can be derived from bilinear equations
D;Dyf-g=fg, Dif-f= %Iglz,
through the hodograph transformation
z=y—2(Inf);, t=—s

and the dependent variable transformation q = %
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Multi bright soliton solution to the focusing complex short
pulse equation

The CSP equation admits multi-soliton solution

A 1 &7
A T -
f= I y, g=|—-1 B 0 )
2N x2N 0 G (2N+1)x (2N+1)
where the elements defined respectively by
1 e oo
Qi = ———g——e" T, by =
2(p; + p*; ) 2(pj +p*; )

1
gi:piy+;3+£i07 &5 —p,y+ s+€30,

e p;

i
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One-soliton to the focusing complex SP equation

LealPoip)? i,
9

F=1+ 4 (p1+p1)?
Let p1 = p1r + ip1r
_ a1 2pir
ERCE

r=1Y—

2p;
|P1

e™Isech (Mg + M0)

g = a;e™.

1; (tanh (mr +n10) +1) , t=—s,

When p1r < pir, the solution is a smooth envelop soliton; when p1r = p1r1,
the solution becomes a cuspon solition.

Re@.al

ol

Re(q)

Ref@el

— e
]

Figure: lllustration

of smaooth and

cuspon,

soliton'for. focus
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Two-component KP hierarchy and its Gram-type solution

Define the following tau-functions for two-component KP hierarchy,

A T
fm’n - ‘ —I B 9
A I T A I of
gmn=| —-I B 0T |, hp.=| -1 B 9T |,
0 —9% o0 —-® 0 O©
where A and B are N X IN matrices whose elements are
n m
ISR S G 0 R S _% i+
a;j — — e R ij — — e ,
Pi + Dj Dj q; + qj q;
with

1 _ 1 _
§i = —x_1+piws+&o, & = —T_1+ D%+ o,

Pi Dbj
N = @Y1 + Mioy 7 = q;Y1 + Tjo;s
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Two-component KP hierarchy and its Gram-type solution

®, U, ® and ¥ are N-component row vectors
b = (p;"eﬁl, v ,p%eﬁN) , P — ((_ﬁl)_neél, e (_ﬁN)—ne§N> ,
T = (qfe™, e qRe™) T = ((—@1) T, (—an) ™)
Then the following bilinear equations hold

1
EleDylfnm : .fnm = _gnmhnm )

Dm_lgnm ° fnm == gn—l,mfn+1,m )
(leDw_l - 2)gnm * fnm - _legn—l,m . fn—|—1,m ’

Dmlgn,m—i-l ° fn+1,m == gn+1,m+1fnm .
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Reductions to the CSP equation (1)

Recall the bilinear equation of the CSP equation

1
DsDyf'g=.fga sz‘f=§|g|2a

Task: How to get them from the following bilinear equations of two-component
KP? 1
EDmlDylfnm : fnm = _gnmhnm )
Dm_lgnm * .fnm = gn—l,m.fn+1,m 9
(Dmle_l - 2)gnm * fnm - _Dmlgn—l,m ° .fn—l—l,m’

legn,m—l—l : fn+1,m - gn+1,m+1fnm .
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Reductions to the CSP equation (1)

Under the condition q; = p;, q; = p; we have
Fnt1,m+1 = fams  Gnt1,m41 = —Gnm

8:131 fnm = 8y1 fnm, amlgnm = aylgnm .

it then follows

(Dmle_l - 2)gnm . fnm = Dmlgn,m—l—l . fn—i—l,m
In+1,m+1fnm

_gnm.fnm

from
(DmlD:c_l - 2)gnm * fnm == _legn—l,m * fn—l—l,'rn 9

Dmlgn,m+1 . fn-l—l,m == gn+1,m+1fnm .
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Reductions to the CSP equation (l11)

8:n1 fnm = ayl fnm, 8mlgnm = 8ylg'n/rn, .

From 1
EDmlDy1fnm * fnm = _gnmhnm 9

it then follows

- ilfnm : .fnm = _gnmhnm .

2
Let f = foo. 9 = goo, h = hgg, the above bilinear equations read

(Dw1D$—1 - 1)9 : f =0,

1
5D€L’1f.‘f: —gh.
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Reductions to the CSP equation (1V)

By taking
Pj =p;, &o=2~&o, Tjo="jp>
we can easily check that f is real and h = —g*. Then

(DmlDw—1 - l)g : .f == 0,

D2 f-f=2lg*.
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Reductions to the CSP equation (1V)

By taking
Pj =p;, &o=2~&o, Tjo="jp>
we can easily check that f is real and h = —g*. Then

(DmlDw—1 - l)g : .f =0,

D2 f-f=2lg*.

By variable transformation

1
s=2(x1+y1), y= 5(3@—1 +y-1),
we arrive at the bilinear equations for the CSP equation. The multi-soliton

solution can be obtained by a reparametrization

—1 —1
pi — 2p; , DP; —2p; ",
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Lax pair for the CCD and CSP equations

It is known that the CCD equation admits the following Lax pair
¥, =U(p,g; N)¥, ¥,=V(5;\)Y,

where
_ip _ 9 ix ig”
Y Y 2
U(p,q;A) = s Vg A) =
9y lp g 14y
By BY 2 4

Through the reciprocal transformation:
1 2
dx = pdy — §|q| ds, dt = —ds,

one can obtain the CSP equation and its Lax pair:

i _agz
X A
v, = v,
4z i
L X X
[ i 1q |Q| qm
1 +
‘Ilt: 2 a2
_ig _ |4|°ge iy _ ilgl
L™ 2 22 4 2
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Darboux transformation for the focusing CSP equation

Theorem

The Darboux matrix

Al — M ly1) (y1]
— P, PP = """ =
X — ’\I 1y L1 ) |y1)

T=1+
(y1ly1)

¢1 (wa t; )\1)
b1 (CIJ, t; )\1)

can convert the Lax pair of the CSP eq. ¥, = U(q; \)¥, ¥, = V(g; A\)¥
into a new system

U]y =U(g; M) ¥[1], ¥[1]s = V(g; A)¥[1].

The Backlund transformations between (q[1], p[1]) and (g, p) are given through

_ (y1lya)
Mﬂ—p—2mw<k?_M>’
all] =q + (A1 — A1)¢f¢1.

(y1|y1)

4
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Single breather solution

We start with a seed solution

Y B e Y
0] =—=, 0] = —€?, 6 =y + _s.
p[0] 2,(][] 2e y+25

Then we can get the single breather solution

q[]_] _ é cosh 2(01’1{ — i‘-Pl,I) COSh(QOl’R) + sin 2(01’1 + iﬂol,R) sin(cpl,I)
2 cosh(20, gr) cosh(yp1,r) — sin(264,1) sin(e1,r)
v, P . .
e 21In, [cosh(261,r) cosh(p1,r) — sin(264,1) sin(p1,1)],

t= —s,
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Multi-breather solution to the CSP equation

Generally, IN-breather solution:

B [det(G)] ;
a[N] = = | =5 | €
2 |det(M)
2
T = —Zy — ﬁ—s — 2Ing(det(M)), t = —s,
2 8
where
e2(9;+9j) 829; ezej 1
M = + + +
§-& &—xi Xi—& Xi—Xj

C— (lé;“ + v 20 +05) L&t e x4y &%

G+ &6 -6G  xi T8 —-xi SGHYXE -

%k
ity 1 ]e—(e:+oj)> ,
Xi +YX; —X; 1<i,j<N
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Rogue wave solution to the CSP equation

c22, 32 _ .2
q[1] _5 ll + 16(1ﬂ2y A7) ] el?
2 B? (2y —vs)” + B1s? + 4v* + 432
oy B 432 (v?s + B%s — 2vy) .
r=——Yy— —S t = —s.

2 8 B2 (2y — s)® + B4s? + 442 + 482

2

° B2 < X, then we can obtain the regular rogue wave solution
2

° 3?2 = 'Y? then we can obtain the cuspon-type rogue wave

2
° 3% > % then we can obtain the loop-type rogue wave solution
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Rogue wave solution to the focusing complex SP equation

First and second-order rogue wave solutions

Figure: lllustration for the 1st and 2nd rogue waves of the focusing CSP equation
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Bilinear equations of the defocusing complex short pulse
equation

Theorem

The complex short pulse equation
1 2
Got +q— 5 (lel*qz), =0
can be derived from bilinear equations
. . 2 1 2/e2 2
(DsDy —iwDy +ikDs)g - f = 0, Dif-f= 5‘*’ (f — 9| ) s
through the hodograph transformation

m:wny+§s—2(lnf)s, t=—s

and the dependent variable transformation q = %ei("‘y“"s)

v
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Multi dark soliton to the defocusing complex short pulse

equation

)

r=lal, g=|a
where the elements defined respectively by

g ’ Di 1
aij = Oy + s ey = byt <_>
* J

e

p; ) pi +Pj

& = S Pis + aiky + &ios & = Spjs + iRy + &
1

pi—i T proi
where |p;| =1 = e, p; = e i¢

1
q; =
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Reduction from the KP hierarchy

Define the following tau-functions for the single KP hierarchy with negative flow

where

with
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= |8;; + ———— Pk
1<ij<N ‘” pitp; ¥3

o = pT(p; — a)Fes

P = (=) (——— ks

P )
1 1

& = ;33—1 + piz1 + i ata + &io
(3 T

_ 1 1 _

Ej - ;:I: 1 +p_7 ata + EjO.
j Dj




Reduction from the KP hierarchy

Then the following bilinear equations hold

(iDmle_l - 1)Tnk: *Tnk = —Tn+1,kTn—1,k

(aDy¢, — 1)Tny1,k * Tnk = —Tn+1,k—1Tnk+1
(Dgz,(aDy, — 1) — 2a)Tnt1,k * Tnk = (Doy — 2@)Tnt1,k—1 * Tnk+1

Objective bilinear equations:

1
(D:Dy —iwDy +ikD.)g - f =0, Dif-f= _u*(f~|g*)
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Reductions to the dCSP equation

By taking
_ 1
P = —,a =1
j pj’
we have
1 1
Pi+DPi=—+ —
pPi Di
_' -_a
_&_1?7)2:1
pi Dita

thus T, satisfies the reduction conditions
8{1:17-?1]6 - 8(1:_17-?1]6
Tn—1,k+2 = Tnk.
Then the first bilinear equation becomes
1 9
(ED‘“ — 1)Tnk * Tnk = —Tn+1,kTn—1,k

October 20, 2015 34 /42
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Reductions to the dCSP equation

Moeover, from the other bilinear equations and the above reductions, we

have
(Dg,(aDy¢, — 1) — 2a)Tn+1,k * Tnk
(Dzy, — 2a)Tn41,k—1 * Tnk+1(= Tng1,k—1)
—2aTn41,k—1 * Tnt+1,k—1(= Tnk+1)
= 2(1,(0,Dta — ]-)Tn-|-1,k: * Tnk
i.e.,

(Dgy (Dy, +1) — 2iDyt, ) Tnt1,k * Tnk = 0
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Reductions to the dCSP equation

By taking |pi| = 1, &0 = &;oswhere * means complex conjugate, we have
T’;O = T_n’o

(_ﬂi)neﬁi+£;

Y U pi+pl pl

Tno =

1<4,j<N
By defining
f = T00,9 = T10
we get
1 2 *
(EDml —1)f-f=—gg
(leDta —|— iD$1 —_— 2iDta)g . f = 0.

Finally, by setting t, = Ky, 2x7 = ws,the above bilinear equations are

converted into

2

2
D2 = )F - f =~ ag"
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Summary for the focusing and defocusing CSP equation

@ The bright soliton solution to the focusing CSP equation can be
obtained from the reduction of the two-component KP hierarchy or
from the Darboux transformation

@ The rogue wave solution to the focusing CSP equation can be
obtained from the Darboux transformation, we are working on the
higher order rogue wave solutions by Hirota's bilinear method

@ The dark soliton solution to the defocusing CSP equation can be
obtained from the reduction of the one-component KP hierarchy or
from the Darboux transformation
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Integrable semi-discrete complex short pulse equation

Theorem

Bilinear equations

1
EDs(gk:—l—l “fe — 9k fet1) = Gk+1Fe + Grefrt1 s

2 1 *
D fr - fr = 59k -

give semi-discrete complex SP equation

d 1
E(%—}—l —qr) = §($k+1 — k) (qr+1 + ar) »

d

1
2 2
T T) = —— °
dt( k+1 k) 2(|Qk+1| lax|®)

through transformations

gk
qr = —, = 2ka — 2(In fi)s.
Jr
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Multi-soliton solutions to the semi-discrete CSP equation

Multi-soliton solution:

A I T

A T T
fk = y Gk = _I B O [}

-1 B
0o C; O
where the elements defined respectively by

1 3 afoy
ai; eSitéi , bij it

S 2(p; +p Y S 2(p; +pp Y

k

‘ 1+ ap;\* 1 . 1+ ap? 1 _

et = (1) exp(—s + &i0), €% = [ ——2 | exp(—s + &jo)-
1 —ap; Di 1 —ap; D;
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Lax pair to the semi-discrete CSP equation

W1 = UpWg, Wit = V¥,

with
Uy, = 1 — iAo, —iA(gr+1 — qk)
—i)\(q]:+1 —qy) 1+ iAdk

i 1
Vk = < 14)\* 2?k )
29k —ax

@ The compatibility condition d Uy /dt 4+ U Vi, — Vi41Ui = 0 gives
the semi-discrete CSP equation
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Fully discrete complex short pulse equation

Bilinear equations

1+1

l+1 I+1 141
gk+1fk fk+1 gk+1f +gk-fk+1

1+1 1+1 1+1 1+1
=l alb(gk—g_l.fk + g5 + .fk+1 + gk+1f + + gk kil)
k+ f% fkjk = b24' gt

919
give the fully discrete complex SP equation
(= ab) (el + ) = (14 ab) (7 + ) (1 (3L — 2000)
1+ (8, —2a)b 1+ b%qLq,
1+ (65t —2a)b

through transformations

1+ b2q§<:+1‘j;c+1

l+1
1 i
g, =%, b =2a+ SR ).
k fk+1fk
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Conclusion and further topics

@ We have proposed a focusing and defocusing complex short pulse equation
to describe the propagation of ultra-short pulse in optical fibers

@ The multi-bright and multi-dark soliton solutions are obtained from the
reductions of the KP hierarchies

@ The soliton, breather and rogue wave solutions are constructed via the

Darboux transformation
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@ Further topic 1: Physical applications

@ Further topic 2: Self-adaptive moving method based on integrable
discretizations

@ Further topic 3: Studies for the coupled CSP equation
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