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Outline of the talk

Derivation of the complex short pulse (CSP) equation from nonlinear optics

Bright, breather and rogue wave solutions to the focusing CSP equation.

Dark soliton solution to the defocusing CSP equation

Semi- and fully discrete analogues of the CSP equation

Conclusion and further topics

Joint work with:

K. Maruno (Waseda University), Y. Ohta (Kobe University),

L. Ling (South China Univ. of Tech.), Z. Zhu (Shanghai Jiaotong Univ.)
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Review on the Nonlinear Schrödinger equation

Nonlinear Schrödinger (NLS) equation

iqt + qxx + σ2|q|2q = 0 , σ = ±1

σ = 1: focusing case, possessing bright soliton

σ = −1: defocusing case, possessing dark soliton

Rogue wave solution for the focusing NLS equation

Integrable semi-discrete NLS equation: Ablowitz-Ladik (AL) lattice

i
∂qn

∂t
+ (1 + σ|qn|2)(qn−1 + qn+1) = 0 , σ = ±1
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Review on coupled nonlinear Schrödinger equation

Coupled Nonlinear Schrödinger (CNLS) equation

iq1,t + q1,xx + 2(|q1|2 +B|q2|2)q1 = 0 ,

iq2,t + q2,xx + 2(|q2|2 +B|q1|2)q2 = 0 .

The parameter B is related to the ellipticity angle θ as

B =
2 + 2 sin2 θ

2 + cos2 θ
.

For a linearly birefringent fiber (θ = 0), B = 2
3
, for a circularly

birefringent fiber (θ = π/2), B = 2. Only when B = 1, it is

integrable (Manakov system)
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Short pulse equation

uxt = u+
1

6
(u3)xx

Schäfer & Wayne(2004): Derived from Maxwell equation on the setting of

ultra-short optical pulse in silica optical fibers.

Sakovich & Sakovich (2005): A Lax pair of WKI type, linked to sine-Gordon

equation through hodograph transformation;

Matsuno (2007): Multisoliton solutions through Hirota’s bilinear method

FMO (2010): Integrable semi- and fully discretizations.
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. . . . . .

Complex short pulse equation

Complex short pulse equation

qxt + q +
1

2
σ(|q|2qx)x = 0, (σ = ±1)

It is integrablewhich can be viewed as an analogue of the NLS equation in

the ultra-short pulse region.

It is more natural and appropriate in describing the propagation of the

ultra-short pulses in compared with the short pulse equation

σ = 1: focusing case, bright soliton, breather and rogue wave solutions

σ = −1: defocusing case, dark soliton
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Coupled complex short pulse equation

Coupled complex short pulse equation

q1,xt + q1 +
1

2

(
(|q1|2 +B|q2|2)q1,x

)
x
= 0 ,

q2,xt + q2 +
1

2

(
(|q2|2 +B|q1|2)q2,x

)
x
= 0 .

The parameter B is related to the ellipticity angle θ same as the NLS

equation.

For a linearly birefringent fiber (θ = 0), B = 2
3
, for a circularly birefringent

fiber (θ = π/2), B = 2.

Similar to the Manakov system, only when B = 1, it is integrable.
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Derivation of complex short pulse equation (I)

Maxwell’s Equations:

∇ × E = −
∂B

∂t
, ∇ × H = −

∂D

∂t
.

D = ϵE , B = µH , D = E + P .

ϵ: permittivity, µ: permeability. In vacuum, c2 = 1/(ϵ0µ0).

In the frequency-dependent media,

D = ϵ ⋆ E , B = µ ⋆H .

where ϵ = ϵ0(1 + χ(1)(t)). In the frequency domain

D̃ = ϵ̃(ω)Ẽ , B̃ = µ̃(ω)H̃ .

∇2E −
1

c2
Ett = µ0Ptt ,

The induced polarization P(r, t) = PL(r, t) + PNL(r, t).
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. . . . . .

Derivation of complex short pulse equation (II)

Assuming

E =
1

2
e1 (E(z, t) + c.c.) ,

where E(z, t) is a complex-valued function.

Ẽzz(z, ω) + ϵ̃(ω)
ω2

c2
Ẽ(z, ω) = 0 ,

where Ẽ(z, ω) is the Fourier transform of E(z, t) defined as

Ẽ(z, ω) =

∫ ∞

−∞
E(z, t)eiωt dt ,

ϵ̃(ω) = 1 + χ̃(1)(ω) .

where χ̃(1)(ω) is the Fourier transform of χ(1)(t)

χ̃(1)(ω) =

∫ ∞

−∞
χ(1)(t)eiωt dt .
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Derivation of complex short pulse equation (IV)

In the range ultra-short pulse, we approximate the response function χ(1)(λ) by

χ̃(1)(λ) = χ̃
(1)
0 ∓χ̃(1)

2 λ2 , χ̃
(1)
2 > 0, λ =

2πc

ω
.

For Kerr media with cubic nonlinearity, PNL(z, t) = ϵ0ϵNLE(z, t)

ϵNL = 3
4
χ(3)

xxxx|E(z, t)|2.

Ẽzz +
1 + χ̃

(1)
0

c2
ω2Ẽ∓(2π)2χ̃

(1)
2 Ẽ + ϵNL

ω2

c2
Ẽ = 0 .
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Derivation of complex short pulse equation (V)

Applying the inverse Fourier transform yields a single nonlinear wave equation

Ezz −
1

c21
Ett = ±

1

c22
E +

3

4
χ(3)

xxxx

(
|E|2E

)
tt

= 0 .

Applying multiple scale expansion,

E(z, t) = ϵE0(ϕ, z1, z2, · · · ) + ϵ2E1(ϕ, z1, z2, · · · ) + · · · ,

where ϵ is a small parameter, ϕ and zn are the scaled variables defined by

ϕ =
t− x

c1

ϵ
, zn = ϵnz .

−
2

c1

∂2E0

∂ϕ∂z1
= ±

1

c22
E0 +

3

4
χ(3)

xxxx

∂

∂ϕ

(
|E0|2

∂E0

∂ϕ

)
.
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. . . . . .

Focusing and defocusing compex short pulse equation

By a scale transformation

x =
c1

2
ϕ, t = c2z1, q =

c1

√
6c2χ

(3)
xxxx

4
E0

we have

qxt±q +
1

2

(
|q|2qx

)
x
= 0

qxt + q +
1

2
σ
(
|q|2qx

)
x
= 0 , σ = ±1.

Coupled complex short pulse equation of mixed type
q1,xt + q1 +

1

2

(
(σ1|q1|2 + σ2|q2|2)q1,x

)
x
= 0,

q2,xt + q2 +
1

2

(
(σ1|q1|2 + σ2|q2|2)q2,x

)
x
= 0

focusing-focusing (σ1 = σ2 = 1); defocusing-defocusing

(σ1 = σ2 = −1) and focusing-defocusing (σ1 = 1;σ2 = −1).

Bright, dark and bright-dark soliton solutions and rogue wave solution
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Complex coupled dispersionless (CCD) equation


qys = ρq,

ρs±
1

2
(|q|2)y = 0

Konno K, Kakuhata H. J Phys Soc Jpn 1995, 64, 2707, 1996;65:713

K. Konno, Appl. Anal., 57, 209 (1995).

Only the positive sign was studied
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From the complex coupled dispersioless equation to the

complex short pulse equation


qys = ρq,

ρs±
1

2
(|q|2)y = 0

We define a hodograph transformation

dx = ρdy∓
1

2
|q|2d s, dt = −d s,

then we have

∂y = ρ−1∂x, ∂s = −∂t∓
1

2
|q|2∂x

Accordingly, the equation qys = ρq gives the

∂x(−∂t∓
1

2
|q|2∂x)q = q,

qxt + q±
1

2
(|q|2qx)x = 0.
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Bilinear equations of the focusing complex short pulse equation

.
Theorem
..

......

The focusing complex short pulse equation

qxt + q +
1

2

(
|q|2qx

)
x
= 0

can be derived from bilinear equations

DsDyf · g = fg , D2
sf · f =

1

2
|g|2 ,

through the hodograph transformation

x = y − 2(ln f)s , t = −s

and the dependent variable transformation q = g
f
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Multi bright soliton solution to the focusing complex short

pulse equation

.
Theorem
..

......

The CSP equation admits multi-soliton solution

f =

∣∣∣∣∣ A I

−I B

∣∣∣∣∣
2N×2N

, g =

∣∣∣∣∣∣∣
A I ΦT

−I B 0T

0 C1 0

∣∣∣∣∣∣∣
(2N+1)×(2N+1)

,

where the elements defined respectively by

aij =
1

2(p−1
i + p∗−1

j )
eξi+ξ∗

j , bij =
αiα

∗
j

2(p−1
j + p∗−1

i )

ξi = piy +
1

pi
s+ ξi0, ξ

∗
j = p∗jy +

1

p∗j
s+ ξ∗j0,
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One-soliton to the focusing complex SP equation

f = 1 +
1

4

|α1|2(p1p̄1)2

(p1 + p̄1)2
eη1+η̄1 , g = α1e

η1 .

Let p1 = p1R + ip1I

q =
α1

|α1|
2p1R

|p1|2
eiη1I sech (η1R + η10) ,

x = y −
2p1R

|p1|2
(tanh (η1R + η10) + 1) , t = −s ,

When p1R < p1I , the solution is a smooth envelop soliton; when p1R = p1I ,

the solution becomes a cuspon solition.
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Figure: Illustration of smooth and cuspon soliton for focusing CSP equation
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Two-component KP hierarchy and its Gram-type solution

Define the following tau-functions for two-component KP hierarchy,

fmn =

∣∣∣∣∣ A I

−I B

∣∣∣∣∣ ,
gmn =

∣∣∣∣∣∣∣
A I ΦT

−I B 0T

0 −Ψ̄ 0

∣∣∣∣∣∣∣ , hmn =

∣∣∣∣∣∣∣
A I 0T

−I B ΨT

−Φ̄ 0 0

∣∣∣∣∣∣∣ ,
where A and B are N ×N matrices whose elements are

aij =
1

pi + p̄j

(
−
pi

p̄j

)n

eξi+ξ̄j , bij =
1

qi + q̄j

(
−
qi

q̄j

)m

eηi+η̄j ,

with

ξi =
1

pi
x−1 + pix1 + ξi0, ξ̄j =

1

p̄j
x−1 + p̄jx1 + ξ̄j0,

ηi = qiy1 + ηi0, η̄j = q̄jy1 + η̄j0,
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Two-component KP hierarchy and its Gram-type solution

Φ, Ψ, Φ̄ and Ψ̄ are N -component row vectors

Φ =
(
pn1 e

ξ1 , · · · , pnNe
ξN
)
, Φ̄ =

(
(−p̄1)−neξ̄1 , · · · , (−p̄N)−neξ̄N

)
,

Ψ =
(
qm1 e

η1 , · · · , qmN e
ηN
)
, Ψ̄ =

(
(−q̄1)−meη̄1 , · · · , (−q̄N)−meη̄N

)
.

Then the following bilinear equations hold

1

2
Dx1Dy1fnm · fnm = −gnmhnm ,

Dx−1
gnm · fnm = gn−1,mfn+1,m ,

(Dx1Dx−1
− 2)gnm · fnm = −Dx1gn−1,m · fn+1,m ,

Dx1gn,m+1 · fn+1,m = gn+1,m+1fnm .
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Reductions to the CSP equation (I)

Recall the bilinear equation of the CSP equation

DsDyf · g = fg , D2
sf · f =

1

2
|g|2 ,

Task: How to get them from the following bilinear equations of two-component

KP?
1

2
Dx1Dy1fnm · fnm = −gnmhnm ,

Dx−1
gnm · fnm = gn−1,mfn+1,m ,

(Dx1Dx−1
− 2)gnm · fnm = −Dx1gn−1,m · fn+1,m ,

Dx1gn,m+1 · fn+1,m = gn+1,m+1fnm .
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Reductions to the CSP equation (II)

Under the condition qj = p̄j, q̄j = pj we have

fn+1,m+1 = fnm, gn+1,m+1 = −gnm ,

∂x1fnm = ∂y1fnm, ∂x1gnm = ∂y1gnm .

it then follows

(Dx1Dx−1 − 2)gnm · fnm = Dx1gn,m+1 · fn+1,m

= gn+1,m+1fnm

= −gnmfnm

from

(Dx1Dx−1 − 2)gnm · fnm = −Dx1gn−1,m · fn+1,m ,

Dx1gn,m+1 · fn+1,m = gn+1,m+1fnm .
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Reductions to the CSP equation (III)

∂x1fnm = ∂y1fnm, ∂x1gnm = ∂y1gnm .

From
1

2
Dx1Dy1fnm · fnm = −gnmhnm ,

it then follows
1

2
D2

x1
fnm · fnm = −gnmhnm .

Let f = f00, g = g00, h = h00, the above bilinear equations read

(Dx1Dx−1 − 1)g · f = 0 ,

1

2
D2

x1
f · f = −gh .
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Reductions to the CSP equation (IV)

By taking

p̄j = p∗j , ξ̄j0 = ξ∗j0 , η̄j0 = η∗j0 ,

we can easily check that f is real and h = −g∗. Then

(Dx1Dx−1 − 1)g · f = 0 ,

D2
x1
f · f = 2|g|2 .

By variable transformation

s = 2(x1 + y1), y =
1

2
(x−1 + y−1) ,

we arrive at the bilinear equations for the CSP equation. The multi-soliton

solution can be obtained by a reparametrization

pi → 2p−1
i , p∗i → 2p∗i

−1 ,
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Lax pair for the CCD and CSP equations

It is known that the CCD equation admits the following Lax pair

Ψy = U(ρ, q;λ)Ψ, Ψs = V (q;λ)Ψ,

where

U(ρ, q;λ) =

− iρ
λ

−q∗
y

λ

qy

λ
iρ
λ

 , V (q;λ) =

 i
4
λ iq∗

2

iq
2

− i
4
λ


Through the reciprocal transformation:

dx = ρdy −
1

2
|q|2ds, dt = −ds,

one can obtain the CSP equation and its Lax pair:

Ψx =

− i
λ

−q∗
x

λ

qx

λ
i
λ

Ψ,

Ψt =

− i
4
λ+ i|q|2

2λ
− iq∗

2
+

|q|2q∗
x

2λ

− iq
2
− |q|2qx

2λ
i
4
λ− i|q|2

2λ

Ψ.
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Darboux transformation for the focusing CSP equation

.
Theorem
..

......

The Darboux matrix

T = I +
λ∗
1 − λ1

λ− λ∗
1

P1, P1 =
|y1⟩⟨y1|
⟨y1|y1⟩

, |y1⟩ =

[
ψ1(x, t;λ1)

ϕ1(x, t;λ1)

]

can convert the Lax pair of the CSP eq. Ψy = U(q;λ)Ψ, Ψs = V (q;λ)Ψ

into a new system

Ψ[1]y = U(q;λ)Ψ[1], Ψ[1]s = V (q;λ)Ψ[1].

The Bäcklund transformations between (q[1], ρ[1]) and (q, ρ) are given through

ρ[1] =ρ− 2 lnys

( ⟨y1|y1⟩
λ∗
1 − λ1

)
,

q[1] =q +
(λ∗

1 − λ1)ψ
∗
1ϕ1

⟨y1|y1⟩
.
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Single breather solution

We start with a seed solution

ρ[0] = −
γ

2
, q[0] =

β

2
eiθ, θ = y +

γ

2
s.

Then we can get the single breather solution

q[1] =
β

2

[
cosh 2(θ1,R − iφ1,I) cosh(φ1,R) + sin 2(θ1,I + iφ1,R) sin(φ1,I)

cosh(2θ1,R) cosh(φ1,R) − sin(2θ1,I) sin(φ1,I)

]
eiθ

x = −
γ

2
y−

β2

8
s− 2 lns [cosh(2θ1,R) cosh(φ1,R) − sin(2θ1,I) sin(φ1,I)] ,

t = −s,
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Multi-breather solution to the CSP equation

Generally, N -breather solution:

q[N ] =
β

2

[
det(G)

det(M)

]
eiθ,

x = −
γ

2
y −

β2

8
s− 2 lns(det(M)), t = −s,

where

M =

([
e2(θ

∗
i +θj)

ξ∗i − ξj
+

e2θ
∗
i

ξ∗i − χj

+
e2θj

χ∗
i − ξj

+
1

χ∗
i − χj

]
e−(θ∗

i +θj)

)
1≤i,j≤N

,

G =

([
ξ∗i + γ

ξj + γ

e2(θ
∗
i +θj)

ξ∗i − ξj
+
ξ∗i + γ

χj + γ

e2θ
∗
i

ξ∗i − χj

+
χ∗

i + γ

ξj + γ

e2θj

χ∗
i − ξj

+
χ∗

i + γ

χj + γ

1

χ∗
i − χj

]
e−(θ∗

i +θj)

)
1≤i,j≤N

.
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Rogue wave solution to the CSP equation

q[1] =
β

2

[
1 +

16(iβ2y − β2 − γ2)

β2 (2y − γs)
2
+ β4s2 + 4γ2 + 4β2

]
eiθ,

x = −
γ

2
y −

β2

8
s−

4β2
(
γ2s+ β2s− 2γy

)
β2 (2y − γs)

2
+ β4s2 + 4γ2 + 4β2

, t = −s.

β2 < γ2

3
, then we can obtain the regular rogue wave solution

β2 = γ2

3
, then we can obtain the cuspon-type rogue wave

β2 > γ2

3
, then we can obtain the loop-type rogue wave solution
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Rogue wave solution to the focusing complex SP equation

First and second-order rogue wave solutions

Figure: Illustration for the 1st and 2nd rogue waves of the focusing CSP equation
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. . . . . .

Bilinear equations of the defocusing complex short pulse

equation

.
Theorem
..

......

The complex short pulse equation

qxt + q −
1

2

(
|q|2qx

)
x
= 0

can be derived from bilinear equations

(DsDy − iωDy + iκDs)g · f = 0 , D2
sf · f =

1

2
ω2
(
f2 − |g|2

)
,

through the hodograph transformation

x = ωκy +
ω

2
s− 2(ln f)s , t = −s

and the dependent variable transformation q = g
f
ei(κy−ωs)
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. . . . . .

Multi dark soliton to the defocusing complex short pulse

equation

f = |A| , g =
∣∣∣A′
∣∣∣ ,

where the elements defined respectively by

aij = δij +
1

pi + p∗j
eξi+ξ∗j , a

′

ij = δij +

(
−
pi

p∗j

)
1

pi + p∗j
eξi+ξ∗j

ξi =
ω

2
pis+ qiκy + ξi0 , ξ

∗
i =

ω

2
p∗i s+ q∗i κy + ξ∗i0

qi =
1

pi − i
, q∗i =

1

p∗i + i

where |pi| = 1 = eiϕ, p∗i = e−iϕ.
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. . . . . .

Reduction from the KP hierarchy

Define the following tau-functions for the single KP hierarchy with negative flow

τnk =
∣∣∣mnk

ij

∣∣∣
1≤i,j≤N

=

∣∣∣∣δij + 1

pi + p̄j
φnk

i ψnk
j

∣∣∣∣
where

φnk
i = pni (pi − a)keξi

ψnk
j = (−

1

p̄j
)n(−

1

p̄j + a
)keξ̄j

with

ξi =
1

pi
x−1 + pix1 +

1

pi − a
ta + ξi0

ξ̄j =
1

p̄j
x−1 + p̄jx1 +

1

p̄j + a
ta + ξ̄j0.
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. . . . . .

Reduction from the KP hierarchy

Then the following bilinear equations hold

(
1

2
Dx1Dx−1 − 1)τnk · τnk = −τn+1,kτn−1,k

(aDta − 1)τn+1,k · τnk = −τn+1,k−1τn,k+1

(Dx1(aDta − 1) − 2a)τn+1,k · τnk = (Dx1 − 2a)τn+1,k−1 · τn,k+1

Objective bilinear equations:

(DsDy − iωDy + iκDs)g · f = 0 , D2
sf · f =

1

2
ω2
(
f2 − |g|2

)
,
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. . . . . .

Reductions to the dCSP equation

By taking

p̄j =
1

pj
, a = i

we have

pi + p̄i =
1

pi
+

1

p̄i

−
p̄i

pi
(−
pi − a

p̄i + a
)2 = 1

thus τnk satisfies the reduction conditions

∂x1τnk = ∂x−1τnk

τn−1,k+2 = τnk.

Then the first bilinear equation becomes

(
1

2
D2

x1
− 1)τnk · τnk = −τn+1,kτn−1,k
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. . . . . .

Reductions to the dCSP equation

Moeover, from the other bilinear equations and the above reductions, we

have

(Dx1(aDta − 1) − 2a)τn+1,k · τnk

= (Dx1 − 2a)τn+1,k−1 · τn,k+1(= τn+1,k−1)

= −2aτn+1,k−1 · τn+1,k−1(= τn,k+1)

= 2a(aDta − 1)τn+1,k · τnk

i.e.,

(Dx1(Dta + i) − 2iDta)τn+1,k · τnk = 0
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. . . . . .

Reductions to the dCSP equation

By taking |pi| = 1, ξ̄j0 = ξ∗j0,where
∗ means complex conjugate, we have

τ ∗
n0 = τ−n,0

τn0 =

∣∣∣∣∣δij + 1

pi + p∗j
(−

pi

p∗j
)neξi+ξ∗j

∣∣∣∣∣
1≤i,j≤N

By defining

f = τ00, g = τ10

we get

(
1

2
D2

x1
− 1)f · f = −gg∗

(Dx1Dta + iDx1 − 2iDta)g · f = 0.

Finally, by setting ta = κy, 2x1 = ωs,the above bilinear equations are

converted into

(D2
s −

ω2

2
)f · f = −

ω2

2
gg∗

(DyDs + iκDx1 − iωDy)g · f = 0.B.-F. Feng (UTRGV) Complex short pulse equation October 20, 2015 36 / 42



. . . . . .

Summary for the focusing and defocusing CSP equation

The bright soliton solution to the focusing CSP equation can be

obtained from the reduction of the two-component KP hierarchy or

from the Darboux transformation

The rogue wave solution to the focusing CSP equation can be

obtained from the Darboux transformation, we are working on the

higher order rogue wave solutions by Hirota’s bilinear method

The dark soliton solution to the defocusing CSP equation can be

obtained from the reduction of the one-component KP hierarchy or

from the Darboux transformation
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. . . . . .

Integrable semi-discrete complex short pulse equation

.
Theorem
..

......

Bilinear equations
1

a
Ds(gk+1 · fk − gk · fk+1) = gk+1fk + gkfk+1 ,

D2
sfk · fk =

1

2
gkg

∗
k .

give semi-discrete complex SP equation
d

dt
(qk+1 − qk) =

1

2
(xk+1 − xk)(qk+1 + qk) ,

d

dt
(xk+1 − xk) = −

1

2
(|qk+1|2 − |qk|2) .

through transformations

qk =
gk

fk
, xk = 2ka− 2(ln fk)s.
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. . . . . .

Multi-soliton solutions to the semi-discrete CSP equation

Multi-soliton solution:

fk =

∣∣∣∣∣ A I

−I B

∣∣∣∣∣ , gk =

∣∣∣∣∣∣∣
A I ΦT

−I B 0T

0 C1 0

∣∣∣∣∣∣∣ ,
where the elements defined respectively by

aij =
1

2(p−1
i + p∗−1

j )
eξi+ξ̄j , bij =

α∗
iαj

2(p−1
j + p∗−1

i )

eξi =

(
1 + api

1 − api

)k

exp(
1

pi
s+ ξi0), e

ξ∗
j =

(
1 + ap∗j

1 − ap∗j

)k

exp(
1

p∗i
s+ ξ̄j0).
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. . . . . .

Lax pair to the semi-discrete CSP equation

Ψk+1 = UkΨk, Ψk,t = VkΨk ,

with

Uk =

(
1 − iλδk −iλ(qk+1 − qk)

−iλ(q∗k+1 − q∗k) 1 + iλδk

)

Vk =

(
i
4λ

−1
2
qk

1
2
q∗k − i

4λ

)

The compatibility condition dUk/d t+ UkVk − Vk+1Uk = 0 gives

the semi-discrete CSP equation
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. . . . . .

Fully discrete complex short pulse equation

Bilinear equations
gl+1
k+1f

l
k − gl+1

k f l
k+1 − glk+1f

l+1
k + glkf

l+1
k+1

= ab(gl+1
k+1f

l
k + gl+1

k f l
k+1 + glk+1f

l+1
k + glkf

l+1
k+1)

f l+1
k f l−1

k − f l
kf

l
k = b2glkḡ

l
k

give the fully discrete complex SP equation
(1 − ab)(qlk + ql+1

k+1) = (1 + ab)
(
ql+1
k + qlk+1

)
(1 + (δlk − 2a)b)

1 + (δlk − 2a)b

1 + (δl−1
k − 2a)b

=
1 + b2qlkq̄

l
k

1 + b2qlk+1q̄
l
k+1

through transformations

qlk =
glk
f l
k

, δlk = 2a+
1

b

(
f l+1
k f l

k+1

f l+1
k+1f

l
k

− 1

)
.
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. . . . . .

Conclusion and further topics

We have proposed a focusing and defocusing complex short pulse equation

to describe the propagation of ultra-short pulse in optical fibers

The multi-bright and multi-dark soliton solutions are obtained from the

reductions of the KP hierarchies

The soliton, breather and rogue wave solutions are constructed via the

Darboux transformation

Further topic 1: Physical applications

Further topic 2: Self-adaptive moving method based on integrable

discretizations

Further topic 3: Studies for the coupled CSP equation
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